
 Journal of Innovative Engineering and Research (JIER)

 Vol.- 1, Issue - 2, October 2018, pp. 1-5 (5 pages)

ISSN (Online) : 2581–6357, Vol. – 1, Issue -2, 2018 @ JIER Page 1

Abstract - The purpose of this paper is to present an introduction

to Distributed Databases which are becoming very popular now

days. Distributed database systems provide an improvement on

communication and data processing due to its data distribution

throughout different network sites. Not only is data access faster,

but a single-point of failure is less likely to occur, and it provides

local control of data for users. We present a study of the

fundamentals of distributed databases (DDBS). We discuss issues

related to the motivations of DDBS, architecture, design,

performance, and concurrency control, etc. and also we explore

some of the research that has been done in this specific area of

DDBS. In this paper we present some research on: query

optimization, fragmentation.

Index Terms— Query Optimization, Concurrency Control,

Recovery Fragmentation Optimization,

I. INTRODUCTION

In today’s world of universal dependence on information

systems, all sorts of people need access to companies’

databases. In addition to a company’s own employees, these

include the company’s customers, potential customers,

suppliers, and vendors of all types. It is possible for a

company to have all of its databases concentrated at one

mainframe computer site with worldwide access to this site

provided by telecommunications networks, including the

Internet. Although the management of such a centralized

system and its databases can be controlled in a well-contained

manner and this can be advantageous, it poses some problems

as well. For example, if the single site goes down, then

everyone is blocked from accessing the databases until the site

comes back up again. Also the communications costs from the

many far PCs and terminals to the central site can be

expensive. One solution to such problems, and an alternative

design to the centralized database concept, is known as

distributed database. The idea is that instead of having one,

centralized database, we are going to spread the data out

among the cities on the

In distributed network, each of which has its own computer

and data storage facilities. All of this distributed data is still

considered to be a single logical database. When a person or

process anywhere on the distributed network queries the

database, it is not necessary to know where on the network the

data being sought is located. The user just issues the query,

and the result is returned. This feature is known as location

transparency. This can become rather complex very quickly,

and it must be managed by sophisticated software known as a

distributed database management system or distributed

DBMS.

Definition

A distributed database (DDB) is a collection of multiple,

logically interrelated databases distributed over a computer

network. A distributed database management system

(DDBMS) is the software that manages the DDB, and

provides an access mechanism that makes this distribution

transparent to the user. Distributed database system (DDBS)

is the integration of DDB and DDBMS. This integration is

achieved through the merging the database and networking

technologies together. Or it can be described as, a system that

runs on a collection of machines that do not have shared

memory, yet looks to the user like a single machine.

A distributed database management system (DDBMS) is

the software that manages the DDB, and provides an access

mechanism that makes this distribution transparent to the

user. Distributed database system (DDBS) is the integration

of DDB and DDBMS. This integration is achieved through

the merging the database and networking technologies

together. Or it can be described as, a system that runs on a

collection of machines that do not have shared memory, yet

looks to the user like a single machine. A distributed database

(DDB) is a collection of multiple, logically interrelated

databases distributed over a computer network. A distributed

database management system (distributed DBMS) is the

software system that permits the management of the

distributed database and makes the distribution transparent to

the users. The term distributed database system (DDBS) is

typically used to refer to the combination of DDB and the

distributed DBMS. Distributed DBMSs are similar to

distributed file systems (see Distributed File Systems) in that

both facilitate access to distributed data.

II. CHARACTERISTICS

However, there are important differences in structure and

functionality, and these characterize a distributed database

system. Distributed file systems simply allow users to access

files that are located on machines other than their own. These

files have no explicit structure (i.e., they are flat) and the

relationships among data in different files (if there are any)

are not managed by the system and are the users

responsibility. A DDB, on the other hand, is organized

according to a schema that defines both the structure of the

distributed data, and the relationships among the data. The

Fundamental Concepts & Techniques of

Distributed Database

MEGHA SINGH
1*

 and RAHUL SHARMA
2

1,2

Department of Computer Science & Engineering, Dr. A. P. J. Abdul Kalam University, Indore
*Corresponding Author Email: meghasingh@aku.ac.in

 Journal of Innovative Engineering and Research (JIER)

 Vol.- 1, Issue - 2, October 2018, pp. 1-5 (5 pages)

ISSN (Online) : 2581–6357, Vol. – 1, Issue -2, 2018 @ JIER Page 2

schema is defined according to some data model, which is

usually relational or object-oriented.

A distributed file system provides a simple interface to

users which allows them to open, read/write (records or

bytes), and close files. A distributed DBMS system has the

full functionality of a DBMS. It provides high-level,

declarative query capability, transaction management (both

concurrency control and recovery), and integrity

enforcement. In this regard, distributed DBMSs are different

from transaction processing systems as well, since the latter

provide only some of these functions.

A distributed DBMS provides transparent access to data,

while in a distributed file system the user has to know (to

some extent) the location of the data. A DDB may be

partitioned (called fragmentation) and replicated in addition

to being distributed across multiple sites. All of this is not

visible to the users. In this sense, the distributed database

technology extends the concept of data independence, which

is a central notion of database management, to environments

where data are distributed and replicated over a number of

machines connected by a network. Thus, from a user s

perspective, a DDB is logically a single database even if

physically it is distributed

Distributed database Governs storage and processing of

logically related data over interconnected computer systems

in which both data and processing functions are distributed

among several sites.

III. DDBS ARCHITECTURE

Hardware

Due to the extended functionality the DDBS must be

capable of, the DDBS design becomes more complex and

more sophisticated. At the physical level the differences

between centralized and distributed systems are:

Multiple computers called sites.

These sites are connected via a communication network, to

enable the data/query communication.

Networks can have several types of topologies that define

how nodes are physically and logically connected. One of the

popular topologies used in DDBS, the client-server

architecture is described as follows: the principle idea of this

architecture is to define specialized servers with specific

functionalities such as: printer server, mail server, file server,

etc. these serves then are connected to a network of clients

that can access the services of these servers. Stations (servers

or clients) can have different design complexities starting

from diskless client to combined server-client machine.

The server-client architecture requires some kind of

function definition for servers and clients. The DBMS

functions are divided between servers and clients using

different approaches. We present a common approach that is

used with relational DDBS, called centralized DMBS at the

server level. The client refers to a data distribution dictionary

to know how to decompose the global query in to multiple

local queries. The interaction is done as follows:

 Client parses the user’s query and decomposes it into

independent site queries.

 Client forwards each independent query to the

corresponding server by consulting with the data

distribution dictionary.

 Each server process the local query, and sends back the

resulting relation to the client.

 Client combines (manually by the user, or automatically by

client abstract) the received sub queries, and does more

processing if needed to get to the final target result.

We would like to discuss the different architectures of

DDBS for the two main types, the client/server, and the

distributed databases:

 The client/server: The file server approach: the simplest

tactic is known as the file server approach. When a client

computer on the LAN needs to query, update, or

otherwise use a file on the server, the entire file must be

sent from the server to that client. All of the querying,

updating, or other processing is then performed in the

client computer. If changes were made to the file, the

entire file is then shipped back to the server. Clearly, for

files of even moderate size, shipping entire files back and

forth across the LAN with any frequency will be very

costly. In terms of concurrency control, obviously the

entire file must be locked while one of the clients is

updating even one record in it. Other than providing a

basic file-sharing capability, this arrangement’s

drawbacks render it not very practical or useful.

Fig 1: Client/Server Architecture

Advantages of Client/Server architecture include:

 More efficient division of labor,

 Horizontal and vertical scaling of resources,

 Better price/performance on client machines,

 Ability to use familiar tools on client machines,

 Client access to remote data (via standards),

 Full DBMS functionality provided to client

workstations,

 Overall better system price/performance

Disadvantages of Client/Server architecture include:

 Server forms bottleneck,

 Server forms single point of failure,

 Database scaling is difficult.

 Journal of Innovative Engineering and Research (JIER)

 Vol.- 1, Issue - 2, October 2018, pp. 1-5 (5 pages)

ISSN (Online) : 2581–6357, Vol. – 1, Issue -2, 2018 @ JIER Page 3

It is preferable for a DDMBS to have the property of

distribution transparency where the user’s can issue global

queries without knowing or worrying about the global

distribution in the DDBS.

 DBMS server approach: A much better arrangement is

variously known as the database server or DBMS server

approach. Again, the database is located at the server, but this

time, the processing is split between the client and the server,

and there is much less data traffic on the network. Say that

someone at a client computer wants to query the database at

the server. The query is entered at the client, and the client

computer performs the initial keyboard and screen interaction

processing, as well as initial syntax checking of the query. The

system then ships the query over the LAN to the server where

the query is actually run against the database. Only the results

are shipped back to the client. Certainly, this is a much better

arrangement than the file server approach! The network data

traffic is reduced to a tolerable level, even for frequently

queried databases. Also, security and concurrency control can

be handled at the server in a much more contained way. The

only real drawback to this approach is that the company must

invest in a sufficiently powerful server to keep up with all of

the activity concentrated there.

 Two-tier client/server: Another issue involving the data on

a LAN is the fact that some databases can be stored on a

client PC’s own hard drive while other databases that the

client might access are stored on the LAN’s server. This is

also known as a two-tier approach, Software has been

developed that makes the location of the data transparent to

the user at the client. In this mode of operation, the user issues

a query at the client, and the software first checks to see if the

required data is on the PC’s own hard drive. If it is, the data is

retrieved from it, and that is the end of the story. If it is not

there, then the software automatically looks for it on the

server. In an even more sophisticated three-tier approach if

the software doesn’t find the data on the client PC’s hard drive

or on the LAN server, it can leave the LAN through a gateway

computer and look for the data on, for example, a large,

mainframe computer that may be reachable from many LANs.

Fig 2: Two tier Client/Server

Three-tier approach: In another use of the term three-tier

approach, the three tiers are the client PCs, servers known as

application servers, and other servers known as database

servers. In this arrangement, local screen and keyboard

interaction is still handled by the clients, but they can now

request a variety of applications to be performed at and by the

application servers. The application servers, in turn, rely on

the database servers and their databases to supply the data

needed by the applications. The local processing on the

clients is limited to the data input and data display capabilities

of browsers such as Netscape’s Communicator and

Microsoft’s Internet Explorer.

Fig 3: Three tier Client/Server

The application servers are the computers at company Web

sites that conduct the companies’ business with the “visitors”

working through their browsers. The company application

servers in turn rely on the companies’ database servers to

provide the necessary data to complete the transactions. For

example, when a bank’s customer visits his bank’s Web site,

he can initiate lots of different transactions, ranging from

checking his account balances to transferring money between

accounts to paying his credit card bills. The bank’s Web

application server handles all of these transactions. It, in turn,

sends requests to the bank’s database server and databases to

retrieve the current account balances, add money to one

account while deducting money from another in a funds

transfer, and so forth

Fig 4: Another Version of Three tier

 Journal of Innovative Engineering and Research (JIER)

 Vol.- 1, Issue - 2, October 2018, pp. 1-5 (5 pages)

ISSN (Online) : 2581–6357, Vol. – 1, Issue -2, 2018 @ JIER Page 4

Software

In a typical DDBS, three levels of software modules are

defined:

 The server software: responsible for local data

management at site.

 The client software: responsible for most of the

distribution functions; DDBMS catalog, processes

all requests that require more than one site. Other

functions for the client include: consistency of

replicated data, atomicity of global transactions.

 The communications software: provides the

communication primitives, used by the client/server

to exchange data and commands of following fig 5.

Fig 5: Client/Server Software

It is preferable for a DDMBS to have the property of

distribution transparency (Shown in following fig.), where the

user’s can issue a global queries without knowing or worrying

about the global distribution in the DDBS.

Fig 6: Layer Transparency

IV. FRAGMENTATION, REPLICATION

In distributing and allocating the database in the previous

section, we assumed that the entire relations are kept intact.

However, in DDBS we need to define the logical unit of DB

distribution and allocation. In some cases it might be more

efficient to split the tables into smaller units (fragments) and

allocate them in different sites.

Fragmentation has three different types.

Horizontal Fragmentation:

The template is designed so that author affiliations are not

repeated each time for multiple authors of the same affiliation.

Please keep your affiliations as succinct as possible (for

example, do not differentiate among departments of the same

organization). This template was designed for two affiliations.

For author/s of only one affiliation (Heading 3): To change

the default, adjust the template as follows.

Selection (Heading 4): Highlight all author and affiliation

lines.

Change number of columns: Select Format >

Columns >Presets > One Column.

Deletion: Delete the author and affiliation lines for the second

affiliation.

For author/s of more than two affiliations: To change the

default, adjust the template as follows.

Selection: Highlight all author and affiliation lines.

Change number of columns: Select Format >

Columns > Presets > One Column.

Highlight author and affiliation lines of affiliation 1 and copy

this selection.

Formatting: Insert one hard return immediately after the last

character of the last affiliation line. Then paste the

copy of affiliation 1. Repeat as necessary for each

additional affiliation.

Reassign number of columns: Place your cursor to the right of

the last character of the last affiliation line of an

even numbered affiliation (e.g., if there are five

affiliations, place your cursor at end of fourth

affiliation). Drag the cursor up to highlight all of the

above author and affiliation lines. Go to Format >

Columns and select “2 Columns”. If you have an

odd number of affiliations, the final affiliation will

be centered on the page; all previous will be in two

columns.

Vertical Fragmentation:

Headings, or heads, are organizational devices that guide the

reader through your paper. There are two types: component

heads and text heads.

Component heads identify the different components of your

paper and are not topically subordinate to each other.

Examples include Acknowledgments and References and, for

these, the correct style to use is “Heading 5”. Use “figure

caption” for your Figure captions, and “table head” for your

table title. Run-in heads, such as “Abstract”, will require you

to apply a style (in this case, italic) in addition to the style

provided by the drop down menu to differentiate the head

from the text.

Text heads organize the topics on a relational, hierarchical

basis. For example, the paper title is the primary text head

because all subsequent material relates and elaborates on this

one topic. If there are two or more sub-topics, the next level

head (uppercase Roman numerals) should be used and,

conversely, if there are not at least two sub-topics, then no

 Journal of Innovative Engineering and Research (JIER)

 Vol.- 1, Issue - 2, October 2018, pp. 1-5 (5 pages)

ISSN (Online) : 2581–6357, Vol. – 1, Issue -2, 2018 @ JIER Page 5

subheads should be introduced. Styles named “Heading 1”,

“Heading 2”, “Heading 3”, and “Heading 4” are prescribed.

Hybrid Fragmentation:

Positioning Figures and Tables: Place figures and tables
at the top and bottom of columns. Avoid placing them in the
middle of columns. Large figures and tables may span across
both columns. Figure captions should be below the figures;
table heads should appear above the tables. Insert figures and
tables after they are cited in the text. Use the abbreviation
“Fig. 1”, even at the beginning of a sentence.

V. CONCURRENCY CONTROL

DDBS design of concurrency and recovery has to consider

different aspects other than of those of centralized DBS.

These aspects include:

 Multiple copies of data: concurrency has to maintain the

data copies consistent. Recovery on the other hand has

to make a copy consistent with others whenever a site

recovers from a failure.

 Failure of communication links

 Failure of individual sites

 Distributed commit: during transaction commit some sites

may fail, so the two phase commit is used to solve this

problem.

 Deadlocks on multiple sites.

The following two sections describe two suggestions to

manage concurrency control.

Distinguished Copy of a Data Item

There are three variations to this method: primary site

technique, primary site with backup site, and primary copy

technique. These techniques are described as follows:

 Primary site In this method, a single site is designated as

the coordinator site. All locks and unlocks for all data

units are controlled by this site. One advantage is, easy to

implement. However two downsides of this method are:

overloading of the coordinator site, and this site forms a

single point failure for the entire DDBS.

 Primary site with backup site This technique addresses

the second disadvantage in the 1st technique (primary

site) by designating a backup site, that can take over as

the new coordinator in case of failure, in which case, an

other backup site has to be selected.

 Primary copy technique This method distributes the load

to the sites that have a designated primary copy of a data

unit as opposed to centralizing the entire data units in one

coordinator site. This way if a site goes down, only

transactions involving the primary copies residing on that

site will be affected.

VI. QUERY PROCESSING

DDBS adds to the conventional centralized DBS some other

types of processing expenses, because of the additional design

(hardware & software) to handle the distribution. These

expenses present as the cost of data transfer over the network.

Data transferred could be, intermediate files resulting from

local sites, or final results need to be sent back to the original

site that issued the query. Therefore, database designers are

concerned about query optimization, which target minimizing

the cost of transferring data across the network. One method

to optimize query on DDBS is, the simijoin, where a relatio n

R1 can send the entire join-column CR1 to the target relation

R2, then the site containing R2 would perform the join on

CR1, and project on the passed attributes. The resulting tuples

are then shipped back to R! for further processing. This can

significantly enhance the query efficiency, since the data

transferred on the network is minimized

VII. CONCLUSION

We presented an introduction to distributed database design

through a study that targeted two main parts: in the first part

we presented an exploration of the fundamentals of DDBS,

and the alternatives of their design. These alternatives

addressed issues such as, architecture, distribution, query

processing, concurrency control, etc. Through this paper, we

want to attract readers towards the advantageous side of

distributed databases. We also mentioned the software

architecture being used for the distributed database .We also

described Fragmentation, replication and recovery aspect also

in order to make readers completely aware about the topic

being described here. Besides having a fruitful side of DDBs,

It also attracts researchers for finding the new scope in it.

REFERENCES

[1] Patrick O’Neil, and Goetz Graefe. 1995. Multi-Table

Joins Through Bitmapped Join Indices. SIGMOD

Record,

[2] Ambrose Goicoechea. 2000. Requirements Blueprint and

Multiple Criteria For Distributed Database Design.

International Council on Systems Engineering

(INCOSE)

[3] Yin-Fu Huang, and Jyh-Her Chen. 2001. Fragment

Allocation in Distributed Database Design. Journal of

Information Science and Engineering 17, 491-506

(2001).

[4] Ramez Elmasri, and Shamkant B. Navathe. 1999.

Fundamentals of Database Systems. Addison Wesley

Longman, Inc.

[5] Tamer Özsu, and Patrick Valduriez. 1998. Distributed

Database Management Systems. Purdue University,

Computer Science department.

[6] The University of Queensland, School of Information

Technology and Electrical

[7] Mark L. Gillenson. 2004. Fundamentals of Database

Systems. Wiley E-Books. www.wiley.com/.

[8] Zhili Zhang and WiliamPerrizo. 2000. Distributed Query

Processing Using Active Networks. ACM 1-58113-239-

5/00/00

